The study of Fluid Sloshing in a Tank–Fluid System
Abstract
Liquid storage reservoirs are used to store a variety of liquids. This paper deals with the behavior of a fluid under horizontal harmonic motion of a tank. The theoretical background of seismic analysis of the dynamic actions of the fluid in a container – impulsive and convective (sloshing) pressure – is considered. The behavior of the fluid under horizontal harmonic motion of tanks was observed experimentally and tested by numerical simulation using the finite element method (FEM) and the volume of fluid (VOF) method. The first natural frequency, the shape of fluid domain, maximums of wave and pressure were observed, analyzed and compared.
Keywords: |
Acceleration; experiment; fluid; harmonic motion; pressure; tank; wave
|
Full Text: |
References
A. Di Carluccio, G. Fabbrocino, E. Salzano, G. Manfredi, “Analysis of pressurized horizontal vessels under seismic excitation,” in 18th The World Conference on Earthquake Engineering (ICSV18). Oct 12–17, 2008, Beijing, China.
Housner, G., W.: “Earthquake pressures on fluid containers”, California institute of technology, Pasadena, California, 1954.
N. Jendzelovsky, L. Balaz, “Modeling of a gravel base under the cylindrical tank,” Advanced Material Research, vol. 969, 2014, pp. 249–252, ISSN 1022-6680. http://dx.doi.org/10.4028/www.scientific.net/AMR.969.249
N. Jendzelovsky, J., Sumec, “Stress – strain fields of the reinforced water tower under seismic loads,” 9th int scientific conf. VSU' 2009. 4–5 June, 2009, Sofia, Bulgaria, vol. 1. Sofia: “L. Karavelov” civil engineering higher school, 2009. P. I76-I-80. ISBN 978-954-331-023-4.
E. Juhasova, J. Bencat, V. Kristofovic, S. Kolcun, “Expected seismic response of steel water tank,” in 12th European Conf. on Earthquake Engineering, Paper reference 595, London 2002.
J. Kralik, “Dynamic analysis of soil-fluid-tank interaction due to earthquake even,” in Dynamika tuhých a deformovatelných těles 2012: sborník přednášek z 10. mezinárodní konference: 10.–12. října 2012, Ústí n. L., ČR, ISBN: 978-80-7414-500-0.
J. Kralik, J. Kralik, jr., “Probability assessment of analysis of high-rise buildings seismic resistance,” Advanced Materials Research, vol. 712–715, 2013, pp. 929–936. http://dx.doi.org/10.4028/www.scientific.net/AMR.712-715.929
K. Kotrasova, “Sloshing of Liquid in Rectangular Tank,” Advanced Materials Research. no. 969 (2014), pp. 320–323. ISBN 978-303835147-4, ISSN 1662-8985. http://dx.doi.org/10.4028/www.scientific.net/AMR.969.320
K. Kotrasova, I. Grajciar, “Analýza hydrodynamických tlakov kvapaliny na steny pravouhlej nádrže so štíhlosťou γ = 1 počas zemetrasenia,” Civil and evironmental engineering. Roč. 5, č. 2 (2009), s. 79–87. ISSN 1336-5835.
K. Kotrasova, I. Grajciar, “Dynamic Analysis of Liquid Storage Cylindrical Tanks Due to Earthquake,” Advanced Materials Research. no. 969 (2014), pp. 119–124. ISBN 978-303835147-4, ISSN 1662-8985. http://dx.doi.org/10.4028/www.scientific.net/AMR.969.119
K. Kotrasova, I. Grajciar, E. Kormanikova, “Dynamic Time-History Response of cylindrical tank considering fluid - structure interaction due to earthquake,” Applied Mechanics and Materials. no. 617 (2014), pp. 66–69, ISSN 1660-9336. http://dx.doi.org/10.4028/www.scientific.net/AMM.617.66
K. Kotrasova, E. Kormanikova, “A Case Study on the Seismic Behavior of Tanks Considering Soil-Structure-Fluid Interaction,” J. of vibration engineering & technologies, vol. 3, Issue 3, pp. 315–330. ISSN 2321-3558.
K. Kotrasova, E. Kormanikova, “Hydrodynamic Analysis of Fluid Effect in Rigid Rectangular Tank Due to Harmonic Motion,” Key Engineering Materials, vol. 635, 2015, pp. 147–150. ISBN 978-303835344-7 http://dx.doi.org/10.4028/www.scientific.net/KEM.635.147
K. Kotrasova, D. Sojcak, “Možnosť riešenia interakcie kvapaliny s nádobou pri harmonickom pohybe,” Civil and evironmental engineering, Roč. 5, č. 2 (2009), s. 72–78. ISSN 1336-5835.
I. S. Leoveanu, K. Kotrasova, E. Kormanikova, “Use Computer Fluid Dynamics in the Process of Forced Flow Filling, Earthquake and Dam Breaking Disaster of Waste Water Reservoirs,” Structural and Physical Aspects of Civil Engineering, 2013 s. 1–8. ISBN 978-80-553-1488-4.
J. Melcer, “Dynamic response of a bridge due to moving loads,” J. of Vibrational Engineering and Technologies, vibration engineering & technologies. ISSN 2321-3558, vol. 3, Issue 2, Jan. 1 2015, pp. 199–209.
J. Sumec, N. Jendželovský, “Reinforced concrete water tank response under a seismic load,” Roczniki inżynierii budowlanej, no. 8 (2008), pp. 71–76 ISSN: 1505-8425.
V. Michalcova et al. “Numerical and experimental investigations of air flow turbulence characteristics in the wind tunnel contraction,” Applied Mechanics and Materials. vol. 617 (2014), pp. 275–279 ISSN: 1022-6680 http://dx.doi.org/10.4028/www.scientific.net/AMM.617.275
B. Taraba, Z Michalec, V. MichalcovÁ, T. Blejchar, M Bojko, M Kozubkova, “CFD simulations of the effect of wind on the spontaneous heating of coal stockpiles,” Fuel. 2014, vol. 118, pp. 107–112, ISSN 0016-2361, http://dx.doi.org/10.1016/j.fuel.2013.10.064.
K. Tvrda, J. Dicky, “Topological Optimization of Girders,” J. of Civil Engineering. ISSN: 1336-9024.
K. Tvrda, “Optimization and safety desing of the foundation plate,” in Modelování v mechanice 2015: Proceedings of scientific conference. Ostrava, May 28th–29th, 2015, pp. 1–10. ISBN: 978-80-248-3756-7.
M. Žmindak, I. Grajciar, “Simulation of the aquaplane problem,” Computers and Structures, vol. 64, Issue 5–6, Sept. 1997, pp. 1155–1164. http://dx.doi.org/10.1016/S0045-7949(97)00024-2
EN 1998-4: 2006 Eurocode 8, Design of structures for earthquake resistance, Part 4: Silos, Tanks and Pipelines, CEN, Brussels, 2006.
DOI: 10.7250/bfpcs.2015.004
Refbacks
- There are currently no refbacks.
Copyright (c) 2016 Boundary Field Problems and Computer Simulation