Mixed-Mode Delamination Failure Model of Sandwich Plate

Eva Kormanikova


Plane fracture of two plies is defined as delamination that can be found between plies in a laminate or sandwich structure. The interface model is solved using fracture and contact mechanics. Within the standard First-Order Deformation Theory of laminates, the mixed-mode delamination failure model is solved. The damage propagation parameters are calculated using the ANSYS code. The delamination problem is solved in a numerical example.


Core; delamination; facesheet; finite element analysis; interface; sandwich; plate

Full Text:



Schoeppner, G.A., Pagano, N.J., “Stress Fields and Energy Release Rates in Cross-ply Laminates,” International Journal of Solids and Structures, vol. 11, pp. 1025–1055, 1998. http://dx.doi.org/10.1016/S0020-7683(97)00107-8

Sun, C.T., Manoharan, M.G., “Strain Energy Release Rates of an Interfacial Crack Between Two Orthotropic Solids,” Journal of Composite Materials, vol. 23, pp. 460–478, 1989. http://dx.doi.org/10.1177/002199838902300503

E. J. Barbero, Finite element analysis of composite materials, CRC Press, USA, ISBN-13: 978-1-4200-5433-0, 2007.

J. Sykora, M. Sejnoha, J. Sejnoha, “Homogenization of coupled heat and moisture transport in masonry structures including interfaces,” Applied Mathematics and Computation, vol. 219 (13), pp. 7275–7285, 2013. http://dx.doi.org/10.1016/j.amc.2011.02.050

S. Harabinova, E. Panulinova, “Properties of Aggregates of Steel-Making Slag,” GeoConference on Energy and Clean Technologies: conference proceedings, Albena, Bulgaria – Sofia, vol. 2, 2014, pp. 199–202. http://dx.doi.org/10.5593/SGEM2014/B42/S18.026

J. Ma, S. Sahraee, P. Wriggers, L. De Lorenzis, “Stochastic multiscale homogenization analysis of heterogeneous materials under finite deformations with full uncertainty in the microstructure,” Computational Mechanics, vol. 55, Issue 5, 25 May 2015, pp. 819–835. http://dx.doi.org/10.1007/s00466-015-1136-3

C. Maruccio, L. De Lorenzis, L. Persano, D. Pisignano, “Computational homogenization of fibrous piezoelectric materials,” Computational Mechanics, vol. 55, Issue 5, 8 April 2015, pp. 983–998. http://dx.doi.org/10.1007/s00466-015-1147-0

M. Sejnoha, J. Zeman, “Micromechanical modeling of imperfect textile composites,” International Journal of Engineering Science, vol. 46 (6), pp. 513–526, 2008. http://dx.doi.org/10.1016/j.ijengsci.2008.01.006

H. Altenbach, J. Altenbach, W., Kissing, Structural analysis of laminate and sandwich beams and plates, Lublin, 2001.

Z. Gürdal, R.T. Haftka, P. Hajela, Design and Optimization of Laminated Composite Materials, J. Wiley & Sons, 1999.

R. Dhabale, V. S. Jatti, “Optimization of material removal rate of AlMg1SiCu in turning operation using genetic algorithm,” WSEAS Transactions on Applied and Theoretical Mechanics, vol. 10, pp. 95–101, 2015.

E. Kormanikova, I. Mamuzic, “Buckling analysis of a laminate plate,” Metalurgija, vol. 47, no. 2, pp. 129–132, 2008. ISSN 0543-5846.

M. Mihalikova et al., “Influence of strain rate on automotive steel sheet breaking,” Chemické listy. vol. 105, no. 17, pp. 836–837, 2011. ISSN 0009-2770.

M. Žmindák, V. Dekýš and P. Novák. “Fracture mechanics approach for analysis of delamination in composite plates,” Advanced Material Research vol. 969, pp. 176–181, 2014. http://dx.doi.org/10.4028/www.scientific.net/AMR.969.176

J. Kralik, “Optimal design of npp containment protection against fuel container drop,” Advanced Materials Research, vol. 688, pp. 213–221, 2013. http://dx.doi.org/10.4028/www.scientific.net/AMR.688.213

E. Kormanikova, I. Mamuzic, “Optimization of laminates subjected to failure criterion,” Metalurgija, vol. 50 (1), pp. 41–44, 2011.

J. Melcer, G. Lajcakova, “Comparison of finite element and classical computing models of reinforcement pavement,” Advanced Materials Research, vol. 969, pp. 85–88, 2014. http://dx.doi.org/10.4028/www.scientific.net/AMR.969.85

J. Yan, “Finite element analysis on steel–concrete–steel sandwich beams,” Materials and Structures, vol. 48 (6), 2015, pp. 1645–1667. http://dx.doi.org/10.1617/s11527-014-0261-3

E. Carrera, “Theories and finite elements for multilayered, anisotropic, composite plates and shells,” Archives of Computational Methods in Engineering, vol. 9 (2), pp 87–140, 2002. http://dx.doi.org/10.1007/BF02736649

I. Száva, M. Šejnoha, E. Kormaníková et al., Selected Chapters of Mechanics of Composite Materials III. Derc Publishing House, 2013.

C. G. Davila, P. P. Camanho, C. A. Rose, “Failure criteria for FRP laminates,” Journal of Composite Materials, vol. 39 (4), pp. 323–345, 2005. http://dx.doi.org/10.1177/0021998305046452

DOI: 10.7250/bfpcs.2015.003


1. Computer Support in Statics
Katarína Tvrdá
International Journal of Education and Information Technologies  vol: 15  first page: 353  year: 2021  
doi: 10.46300/9109.2021.15.37


  • There are currently no refbacks.

Copyright (c) 2016 Boundary Field Problems and Computer Simulation