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Abstract – Liquid storage reservoirs are used to store a variety of 

liquids. This paper deals with the behavior of a fluid under 

horizontal harmonic motion of a tank. The theoretical 

background of seismic analysis of the dynamic actions of the fluid 

in a container – impulsive and convective (sloshing) pressure – is 

considered. The behavior of the fluid under horizontal harmonic 

motion of tanks was observed experimentally and tested by 

numerical simulation using the finite element method (FEM) and 

the volume of fluid (VOF) method. The first natural frequency, 

the shape of fluid domain, maximums of wave and pressure were 

observed, analyzed and compared.   
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I. INTRODUCTION 

Large-capacity ground-supported tanks are used to store a 

variety of liquids. Seismic event is certainly one of the most 

critical external events regarding safety of industrial plants, as 

demonstrated by recent earthquakes. If industrial facilities 

store large amounts of hazardous materials (e.g., petroleum, 

chemicals, liquefied natural gas, chemical and radioactive 

waste), accidental scenarios as fire, explosion or toxic 

dispersion may be triggered, thus possibly involving working 

people within the installation, population living in close 

surrounding or in urban area where the industrial installation is 

located. Liquid storage tanks are considered essential lifeline 

structures. Satisfactory performance of tanks during strong 

ground shaking is crucial for modern facilities. Tanks that 

were inadequately designed or detailed have suffered 

extensive damage during past earthquakes [1], [4]–[7], [18]. 

The knowledge of pressures acting on the walls and bottom of 

containers during an earthquake as well as frequency 

properties of tank–fluid systems are fundamental for a good 

analysis and design of earthquake-resistant structures/facilities – 

tanks [2], [8]–[13]. 

II. TANK–FLUID SYSTEM 

For rectangular tanks whose walls can be considered as 

rigid, the hydrodynamic pressure can be obtained from the 

solution of Laplace’s equation for horizontal excitation. The 

total hydrodynamic pressure is given by the sum of an 

impulsive and convective contribution by using the absolute 

summation rule [19]: 

HDcwHDiwHDw ppp  .                                                      (1) 

A rectangular container with walls having horizontal 

acceleration 
ou  in the x-direction (see Fig. 1a) is considered 

[2], [18]. Due to the acceleration 
ou , unknown pressures are 

generated on the walls of the tank. The tank has depth H, 

length 2L, and unit thickness. It is obvious that the behavior of 

the fluid is similar to the case which would be obtained if the 

horizontal component of the fluid velocity u  were 

independent of the y-coordinate. That situation looks like as if 

the fluid were constrained by thin, massless, vertical 

membranes that are free to move in the x-direction; the 

distance between adjacent membranes is dx (Fig. 1b).  
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Fig.  1. Rectangular tank–fluid system (impulsive action).  

In the case the walls of the container are under known 

acceleration, the membranes accelerate proportional to the 

fluid, while, at the same time, the fluid squeezes vertically 

along membranes y-direction.  

As shown in Fig. 1b, since the fluid is restrained between 

two adjacent membranes, the vertical velocity v  is dependent 

on the horizontal velocity u according to (2): 

 
dx

ud
yHv


  .                                                                 (2) 

This is an equation specifying the constraint on the fluid 

flow. As the fluid is considered incompressible, it follows that 

the acceleration v  is proportional to the velocity v  and the 

acceleration u  is proportional to the velocity u , and the 

pressure in the fluid between two membranes is given by the 

standard hydrodynamic equation (3): 

v
y

p




 ,                                                                         (3) 

where  is density of the fluid.  

Total horizontal force on one membrane is 
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These tree equations may be writtten as follows: 
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The velocity is thus solved when the velocity u  is known. 

The kinetic energy of the fluid is  
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and the potential energy of the fluid is zero. Hamilton’s 

principle states that  
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pk dtWW .                                       (7) 

Let us now derive the equation in a more straightforward 

fashion. The slice of the fluid shown in Fig. 1b will be 

accelerated in the x-direction if the pressures on the two faces 

differ. The equation of motion is  

0
3
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 u
Hdx

ud


  .                                             (8) 

The acceleration 
ou  thus produces an increase in the 

pressure on one wall and a decrease in the pressure on the 

other wall: 
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In dependence on  = z / H, where distance z is the distance 

(height) from the bottom of the tank to the free surface of the 

liquid z = H − y, the hydrodynamic pressures on the wall are 

given: 
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Hydrodynamic impulse pressures are as well given by 

     tHACp giwHDiw   ,           (11) 

where the free-field motion of the ground is represented by the  

Ag(t), and  is mass density of the liquid.  

The distribution of hydrodynamic pressures on the wall of 

tank  HDiwp  along the height of wall is given by (11), where 

the function  iwC  (12) is shown in Fig. 2 in dependence on 

the tank’s “parameter slenderness ”. The function  iwC  

presents the functions of partitions of the pressures on the wall 

for ξ = 0 (i.e., at the wall of the tank) at the bottom of the tank 

and for ξ = 1 (i.e., at the wall of the tank) at the free surface. 

Tank’s “parameter slenderness” is given by relation  = H / R, 

where H is the height of filling of the fluid in the container and 

L is half of the width of the container: 
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Fig.  2. Functions  iwC  of partitions of the impulse pressures on the wall of 

the tank in dependence on the parameter of slendness  of the tank. 

The effect of impulsive pressures is to excite the fluid into 

oscilation. In order to examine the fundamental mode of 

vibration, the fluid to be constrained between the rigid 

membranes that are free to rotate (as shown in Fig. 3) is 

considered. The constraint is described by the following 

equations: 

dy

dxL
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The pressure in the fluid is given by 
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The hydrodynamic pressures are given by 
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In dependence on  = z / H, where distance z is the distance 

(height) from the bottom of the tank to the free surface of the 

liquid z = y, the convective hydrodynamic pressure is given by 

a summation of modal terms (sloshing modes), each one 

having a different variation with time: 

     






1n

cnncwnHDcwn fLAQp  .        (17) 

As for a rectangular container, the dominant contribution is 

the fundamental mode, that is: 

     1111 ccwHDcw fLAQp   ,         (18) 

where the free-field motion of the ground is here represented 

by the peak value of A1(t) that is the acceleration response 

function of a simple oscillator having the frequency of the first 

mode, the appropriate value of the damping, and subjected to 

an input acceleration Ag(t);  is mass density of the liquid. The 

distribution hydrodynamic pressures on the wall of the tank 

 1HDCwp along the height of the wall are given by (18), where 
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the function  1cwQ  (19) is represented in Fig. 4 in 

dependence on the tank’s parameter “slenderness ”. The 

function  1cwQ  presents the function of partitions of the 

pressures on the wall for ξ = 0 (i.e., at the wall of the tank) at 

the bottom of the tank and for ξ = 1 (i.e., at the wall of the 

tank) at the free surface. The tank’s parameter “slenderness” is 

given by relation  = H / R, where H is the height of filling of 

the fluid in the tank and L is half of the width of the container:  
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Fig.  4. Functions  1cwQ  of partitions of the impulse pressures on the 

wall of the tank in dependence on the parameter of slendness  of the tank.  

The equation of the motion of a slice of the fluid is 
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The solution of (20), with the boundary conditions 

appropriate to the problem, is for sinusoidal oscillations: 
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This specifies the oscillation of the fluid. To determine the 

natural frequency of vibration, the maximum kinetic energy, 

KW , is equated to the maximum potential energy, PW : 
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That gives  
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The circular frequencies are then for the nth mode: 
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An exact expression is given also by Graham and Rodriguez: 
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The difference between 570796.1
2



 in (24), (25) and 

581139.1
2

5
  in (26) give 0.010343, it is 0.658 %. 

III. THE EXPERIMENT 

A glass rectangular tank was used in the experiment. The 

glass rectangular tank was filled with water by using small 

quantities of potassium permanganate (2KMnO4). The tank’s 

inner ground parameters were 192 mm × 392 mm, and inner 

height was 242 mm. The height of water filling in the 

container was 150 mm. The tank was excited by a horizontal 

harmonious motion of various frequencies with amplitudes of 

5 mm and 10 mm in the direction of tank’s length – 392 mm 

(see Figs 5 and 6), [3], [16], [17], [21]. 

Fig. 5. View of the experimental workstation. 

Fig. 6. Wiev of the PC control screen. 
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IV. RESULTS, DISCUSION, AND CONCLUSION 

The maximum wave of fluid for 150 mm fluid filling 

(water) in tank could be 92 mm from free surface. It was 

expected first natural frequency would be 1.295 Hz (by 

Housner) or 1.289 Hz by (Graham and Rodriguez). Fig. 7 

presents the maximum waves for 150-mm filling of water in 

the tank from the experiment by various exciting frequencies 

with 5-mm (red square) and 10-mm (blue circle) amplitudes. 

The maximum height of the fluid wave for 150-mm filling of 

water in the tank was 90 mm from the free surface for exciting 

1.22 Hz with a 10-mm amplitude; the blue arrow depicts 

sloshing out of water in case for 50 mm amplitude by exciting 

frequency 1.2 Hz.  
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Fig. 7. Maximum wave in [cm] for 150-mm fluid filling of the tank by 

various exciting with amplitudes 5-mm and 10-mm depending on 

frekvencies [Hz]. 

Figs 8 and 9 show: 

− maximum wave (cm) by various exciting frequencies 

with 5-mm amplitude depending on acceleration (Fig. 8), 

− maximum wave (cm) by various exciting frequencies 

with 10-mm amplitude depending on acceleration 

(Fig. 9). 
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Fig. 8. Maximum wave in [cm] for 150-mm fluid filling of the tank by 

various exciting with amplitude 5-mm depending on acceleration [m/s-2]. 
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Fig.  9. Maximum wave in [cm] for 150-mm fluid filling of the tank by 

various exciting with amplitude 10-mm depending on acceleration [m/s-2]. 

 

The natural frequencies of fluid in container from our 

experimentwere calculated by analytical solution, eq. (25), see 

Fig. 10. 
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Fig. 10. The natural frequencies of the fluid for 150-mm fluid filling of 

the tank–fluid system. 

Comparing of first natural frequency of fluid in container 

obtained by measurement from our experiment and by 

calculating using analytical solutions eq. (24) or (25) and eq. 

(26) was documented in Table 1. 

TABLE I  

COMPARISON OF THE FIRST NATURAL FREQUENCY 

Analytical 

solution 

by Housner 1.295 Hz 

by Graham 

and Rodriguez 
1.289 Hz 

Experiment 

by exciting amplitude 

5 mm 

1.22 Hz 

by exciting amplitude 

10 mm 

1.2 Hz 

(sloshing out) 
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The experiment was the base for numerical simulations. 

The model of fluid filled tank in under horizontal harmonic 

motion was tested.  Moving of free surface without sloshing 

was watched. The tank with water filling 150 mm, that exited 

frequency f = 1 Hz and amplitude 50 mm was considered. The 

immediate deflection was given by eq. 27, 

 ftxx 2sin0  ,                                                            (27) 

where x0 = 0.005 m, exited frequency was f = 1 Hz, and water 

filling was 150 mm. 

The aim of the modeling of this phenomenon is to 

consistently achieve the maximum water level so that it is 

consistent with the results of our experiment. The dynamic 

time–history response of open-top rectangular liquid storage 

tanks was performed by application of the volume-of-fluid 

(VOF) method using software Fluent [14], [17], [22], [23].  

The shapes of fluid domain and the maximum heights of 

wave in the experiment and from numerical simulation using 

the Fluent software were compared in Fig. 11 and Fig. 12, 

respectively [14], [18], [19].  

 

 
Fig. 11. shapes of the free surface of the fluid and the maximum wave in 

the experiment.  

 
Fig. 12. Shape of the fluid domain and the maximum wave 

in numerical simulation. 

Figs 13 and 14 show: 

− time-dependent response of the displacement together 

with the velocity of the fluid at the point of right top the 

edge of the fluid on free surface (Fig. 13), 

− time-dependent response of the displacement together 

with the pressure of the fluid at point right down the edge 

of fluid (Fig. 14).  

The controled hydrostatic pressure on the bottom of the 

container was calculated by the analytical result: 

p = ·g·h = 1000·9.81·0.15 = 1471.5 Pa. 
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Fig.  13. Time-dependent response of vertical displacement in [m] and 

velocity of the fluid in [ms−1].  
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Fig. 14. Time-dependent response of fluid pressure on the bottom of the tank 
in [Pa]. 

Dynamic time-history response of rectangular liquid 

storage tanks was performed by using the finite element 

method (FEM) using Adina software. 

Fig. 15 demonstrates the shape of the fluid domain and 

pressure of the fluid in time t = 2.275 s. 

 

Fig. 15. Shape of the fluid domain and pressure of the fluid in time 

t = 2.275 s. 
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