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Abstract – Plane fracture of two plies is defined as 

delamination that can be found between plies in a laminate or 

sandwich structure. The interface model is solved using fracture 

and contact mechanics. Within the standard First-Order 

Deformation Theory of laminates, the mixed-mode delamination 

failure model is solved. The damage propagation parameters are 

calculated using the ANSYS code. The delamination problem is 

solved in a numerical example.   
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I. INTRODUCTION 

Composite materials have various types of applications in 

many areas of engineering. The introduction of sandwich 

structures is made in a variety of naval engineering 

applications.  

One can investigate an initiation and propagation of 

delamination. Most analyses evaluate the energy release rate 

(ERR). By [1], variational methods were used for evaluation 

of ERR. The ERR approach was later extended by [2].   

In a layered structure, generally, first and second interface 

failure modes are observed. The first mode involves opening 

mode or delamination buckling, the second one is shearing 

mode.   

II. PERIODIC MICROSTRUCTURE MODEL  

Assume a sandwich made of fiber-reinforced outer layers 

with random distribution of fibers. A random microstructure is 

well-approximated by a periodic microstructure model 

(Fig.  1). 

In general, there is a correlation between stress, strain, 

stiffness and the position inside the representative volume 

element (RVE) [3]–[8]. 

 

Fig. 1. Periodic microstructure model.  

 

The elastic properties of a homogenized material can be 

computed by [3]: 
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where 
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The constants S3, S6, and S7 can be approximated [3]: 

.3517.032035.012346.0

27152.014944.036844.0
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When the components of elastic matrix E can be derived, 

the material characteristics needed for modeling at 

macroscopic level can be calculated: 
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III. STRESS RESULTANTS AND STRESS ANALYSIS OF 

SANDWICHES 

The in-plane forces, moments and transverse shear forces 

are defined by: 
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For the resultants N and M, the integration is carried out 

over the sheets (h1, h3) only and for the transverse shear force 

V over the core (h2) [9]–[12].  

The constitutive equation in hypermatrix form is written as 

[9]: 
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where   is the membrane strain vector, k is the curvature, 

and   is the transverse shear strain.   

The stiffness coefficients are defined by: 
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where n1 and n2 are the numbers of layers in the lower and the 

upper sheet, respectively, 
ijE are the in-plane elastic moduli of 

the sheets, and t

ijE are the transverse shear moduli of the core.  

IV. THEORY OF FAILURE IN A LAYERED STRUCTURE 

One of delamination configurations which have been 

investigated in literature is the beam-type delaminated 

specimen subjected to bending, axial, and shear loading. It 

forms the basis for experimental methods used to measure 

interlaminar fracture strength under pure mode I, mode II, 

mode III, and mixed-mode conditions in composites, adhesive 

joints, and other laminated materials. Individual modes of 

fracture are illustrated in Fig. 2. 

        z                                             z                                                      z                 

x x x 

y y y 

       Mode I                                    Mode II                                            Mode III   

F 

F 

F 

F 

F 

F 

 
Fig. 2. Fracture modes of delamination growth: Mode I – opening, Mode II – 

sliding, Mode III – tearing. 

The mechanisms that lead to failure in composite materials 

are not fully understood yet, especially for matrix or fiber 

compression. Strength-based failure criteria are commonly 
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used by FEM to predict failure events in composite structures. 

Different continuum-based criteria have been derived to relate 

the internal stresses and experimental measures of material 

strength to the onset of failure [13]–[16]. In Fig. 3, a laminate 

contains a single in-plane delamination crack of area 
DΩ  with 

a smooth front DΩ . The laminate thickness is denoted by h0. 

In this case, each sublaminate is represented by an assemblage 

of the first-order shear deformable (FSDT) plate elements 

bonded by zero-thickness interfaces in the transverse direction 

as shown in Fig. 4. Accordingly, the displacements in the z-th 

plate element, in terms of a global reference system located at 

the laminate mid-surface, are expressed [3], [14] as 
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where ui and vi refer to the in-plane displacements; wi refers to 

the transverse displacements through the thickness of the i-th 

plate element; 000 ,, iii wu v  are the displacements at the mid-

surface of the i-th plate element, respectively; and 

 x,yx,y yixi  ),(  denote rotations of transverse normals about x 

and y axis, respectively.  

 

 

Fig. 1. Delaminated composite plate 
 

           Fig. 3. Mechanics of a delaminated composite structure. 

 

 

Fig. 2. Laminate subdivision in plate 
 

 
Fig. 4. Laminate subdivision in plate elements. 

 

At the reference surfaces, the membrane strain vector  , 

the curvature k, and the transverse shear strain  , 

respectively, are defined as: 
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In this work, standard FSDT finite elements available in 

ANSYS software are used. These elements are joined at the 

interfaces inside each sub-laminate using coupling elements 

(CE) or rigid links characterized by two nodes and three 

degrees of freedom at each node [14]. 

The constitutive equation of the interface involves two 

stiffness parameters, k z  and k x y ,  imposing displacement 

continuity in the thickness and in-plane directions, 

respectively, by treating them as penalty parameters. The 

relationship between the components of the traction vector 

 Tzzzyzx  ,,σ  acting at the lower surface of the upper 

sublaminate, in the in-plane (x and y) directions and in the 

out-of-plane one (z), respectively, and the corresponding 

components of the relative interface displacement vector 

 Twvu  ,,Δ are expressed in matrix form as [3], [14]: 

                                        Δσ K                                   (35) 
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where K is the diagonal matrix of stiffness parameters k x y  and 

k z .  

The interface elements are implemented using the 

COMBIN14 type element. The relative opening and sliding 

displacements are evaluated as the difference between 

displacements at the interface between the lower and upper 

sublaminate. In order to avoid interpenetration between 

delaminated sublaminates in the delaminated region
DΩ , a 

unilateral frictionless contact interface can be introduced, 

characterized by zero stiffness for opening relative 

displacements ( Δw  ≥  0 )  and a positive stiffness for closing 

relative displacements (Δw  ≤  0 ); then the contact stress zz  

is [3, 14]  

                     wkwσ zzz Δ)sign(Δ1
2

1
 ,                      (37) 
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where k z  is the penalty number imposing contact constraint, 

and sign is the signum function. A very large value of k z  

restricts sublaminate overlapping and simulates the contact 

condition. This element is a unidirectional element with 

nonlinear constitutive relationships with appropriate 

specialization of the linear constitutive law according to (36). 

If we introduce a scalar damage variable D with the value 

of 1 for no adhesion and the value of 0 for perfect adhesion, 

we get a single extended interface model with constitutive 

law valid both for undelaminated 
DΩΩ   and delaminated 

DΩ  

areas. Consequently, the constitutive law can be expressed as 

                                     Δ1σ KD .                             (38) 

In order to determine the individual ERR, the relative 

interface displacements must be expressed in the local 

coordinate system attached to the delamination front shown in 

Fig. 5. Denoting the unit vectors in the normal and tangential 

directions to the delamination front as n and t, respectively, 

the relative interface displacement in the global x, y, z system 

   T
wvu  ,, , is related to that in the n, t, z system 

   T

tn wuu  ,,,  by transformation matrix of direction 

cosines. 

The problem of ERR computation can be solved locally by 

using interface variables, that is interlaminar stresses and 

relative variables. The connection between the interface 

approach and fracture mechanics approach will be established, 

demonstrating that the interface approach corresponds to the 

limit physical situation when the thickness of a thin adhesive 

layer tends to zero. Using the interface constitutive equation 

(36) to compute interlaminar stresses, leads to the following 

total ERR expression for unilateral contact conditions: 

   0,lim
2

1 22

y

2
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wvkukwkG xyxz
kk xyz

 ,         (39) 

where G is the local ERR function along the delamination 

front. 

 
 

Fig. 5. Propagation of delamination front [3]. 
 

In order to predict crack propagation in laminates for 

general loading conditions, ERR distributions along the 

delamination front are needed. Fracture mechanics assumes 

that delamination propagation is controlled by the critical 

ERR. Delamination grows on the region of the delamination 

front where the following condition is satisfied and is 

in the form of [3] 
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where α ,  β and γ are mixed-mode fracture parameters 

determined by fitting experimental test results. 

In this paper, standard First-Order Deformation Theory 

(FSDT) finite elements available in ANSYS software are used. 

These elements are joined at the interfaces inside each 

sublaminate using coupling elements (CE) or rigid links 

characterized by two nodes and three degrees of freedom at 

each node. 

The FE model of the plates adjacent to the delamination 

plane in proximity of the delamination front is illustrated in 

Fig. 6. 

The extent of the propagation of the delamination area can 

be established by realizing in which the relation (38) is first 

satisfied, leading to modification of the delamination front. 

Therefore, the delamination growth analysis must be 

accomplished iteratively. 

 

B
 
B
´  t  

 n  

 nl +1 plate model 

 nl  plate model 

plate element mid-plane 

rigid link 
delamination plane node 

 interface element 

plate element 

A
 

Fig. 6. Detail of FE model in proximity of the delamination front [3]. 

 
ERR are computed by using [3]: 
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where t

A

n

A

z

A RRR ,,  are the reactions in the spring element 

connecting node A in the z, normal and tangential direction to 

the delamination front;
BBtBBnBB uuw
  ,,  are the relative z, 

n, t displacements between the nodes B and B located 

immediately ahead of the delamination front along its normal 

directions passing through A; 
t  and 

n  are the characteristic 

mesh sizes in the normal and tangential directions [3], [14]. 

V. THE EXAMPLE OF DAMAGE MODELING 

Using ANSYS, a sandwich plate (1–2 model) comprising 

two sub-plates of thicknesses t1 = h1 = 0.5 mm and t2 = h2 + 

h3 = 10.5 mm is analyzed. The sub-plates are loaded by the 

load mode I (F = 1 N/mm). Dimensions of the sandwich plate 

are shown in Fig. 7.  
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Fig. 7. Sandwich geometry.  

 

The sheets are made of carbon/epoxy composite with fiber 

volume fraction 60. . 

The mechanical characteristics of the core:  

Ex = Ey = Ez = 0.4 GPa;  

Gyz = Gxy = Gxz = 0.02 GPa;  

vxy = vxz = vyz = 0.4.  

The stiffness of the spring elements binding the subplates is 

chosen as kz = kxy = 108 N/mm3. The interface between the 

subplates is modeled without stiffness for opening 

displacements and with positive stiffness for closing 

displacements. 

The response mode of components of displacements, energy 

release rate and spring reaction forces along the delamination 

front is calculated. 

VI. CONCLUSION 

A two-subplate sandwich FEM [17]–[21] model which 

incorporates interface models based on fracture and contact 

mechanics has been proposed. The interface between 

sublaminates is modeled by CE. The delamination front is 

created by spring elements COMBIN14, in each node 

of the delamination front by three elements. The sub-plates 

were modeled by using shear deformable elements SHELL181 

in the program ANSYS.  

Contour plots of displacements in y, z and x directions are 

shown in Figs 8–10, respectively.  

The individual components of the spring reaction force, 

displacements and ERR for response modes I, II and III along 

the delamination front were calculated.  

The spring reaction forces Rz and Rx along the 

delamination front are shown in Figs 11 and 12, respectively. 

The ERR I and ERR II along the delamination front are 

shown in Figs 13 and 14, respectively. 

The results have shown that the response mode I is 

predominant and the mode III is negligible.  

 

 

 Fig. 8. Displacements in y direction, respectively.  
 

 

  

 

 

Fig. 9. Displacements in z direction, respectively. 
 

 

 

  

 

Fig. 10. Displacements in x direction, respectively. 
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Fig. 11. Spring reaction force Rz. 

 

0 2 4 6 8 10 12 14 16 18 20
-50

-45

-40

-35

-30

-25

-20
Spring reaction force in x-direction

Delamination front [mm]

R
 [

N
]

 

Fig. 12. Spring reaction force Rx. 
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Fig. 13. ERR I. 
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Fig. 14. ERR II. 
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