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Abstract – This is the first research which considered the 

problem of forced oscillations strip connected with the half-plane 

where both scopes were supposed to be different anisotropy to 

the orthorhombic crystal system. Researchers used the method of 

contour integration in the fields of displacements and a 

comparative analysis of the properties of the energy flows in hard 

and sliding connection of these medium. 
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I.  INTRODUCTION 

The influence of different pads located along the edge of the 

semi-infinite environment, was seen repeatedly. For 

anisotropic models of semi-infinite substrates the influence of 

the properties of border discontinuities on the dispersion 

curves and surface waves was investigated [1], [2]. The 

authors of [3] and [4] studied the acoustic effects observed in 

the elastic wave propagation in layered anisotropic media. 

However, analysis of the energy transferred by anisotropic 

medium with overlay, was presented in smaller publications, 

among them [5] can be mentioned, where the energy 

characteristics of wave fields in multilayered anisotropic 

composites and estimation of the distribution of the portable 

power mod was investigated. 

It is the first time that the researchers considered the 

problem of forced oscillations of strip connected with the half-

plane, where both scopes were supposed to be of different 

anisotropy up to the orthorhombic crystal system inclusive of 

their hard and sliding connections. The defining move for each 

of the areas addressed issues associated with energy transfer 

and dependence of this characteristic length of the segment 

action of surface loading. The study first showed the 

relationship between the flows of energy transmitted in each 

of the medium separately, with respect to the total flow 

supplied to the infinite layer in the half-plane through the area 

dimension of loading of different lengths. A comparative 

analysis of properties of energy flows in hard and sliding 

connection is given. For numerical studies and examples, we 

used the following anisotropic material of strip and half-plane, 

respectively: titanate barium and beryllium. 

II. FORMULATION OF THE PROBLEM 

The following dynamic problem is considered. In fields  

V(1) =  ,1 x  03  xh , V(2) =  ,1 x  03 x  we will 

seek the solution of the differential equations of motion, 

transformed by Fourier in the assumption of the existence of 

the mode steady-state oscillations (time-dependent factor 
tie  is omitted): 
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where k = 1, 2 defines the system for strip and half-plane, 

respectively. 

Boundary conditions and the conditions that characterize 

the type of interaction of these media are the following: 

1) The case of rigid connection: 
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2) The case of sliding connection: 
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The statement of the problem completes the selection 

condition of the only solution, which here is the limiting 

absorption principle [10]. 
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After that the standard technique of solution is applied. 

Imagine Fourier transforms for strip and half-plane in the form 
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and substituting (4) with (1) where k = 1, 2, respectively. There 

will be two systems of homogeneous algebraic equations for 

the component vectors A, B. A nontrivial solution of these 

systems turns to a zero specifier. These conditions determine 

the expression of characteristic numbers m, m, m = 1 – 4. 

Omitting the details of calculations, we give the expression 

k(), k() to dimensionless forms. For this we introduce the 

dimensionless elastic constants 
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Then the formula for the roots takes the form of 
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Thus the discriminant )~(kD  is expressed by formulas 
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For convenience, the tilde over k , k  further will be omitted. 

When considering characteristic functions (5) and (6) in 

complex plane  i  )~(   further it is assumed that the 

branches of the roots are selected according to the conditions 

,0)(Re kD     0)(Re )( k
mG ,    k, m = 1, 2.   (8) 

In contrast, the solutions for stripes, involving all four roots 

of the characteristic equation, the half-plane must choose two 

values m that satisfy the attenuation of the waves at infinity 

(x3  ) 

Im m < 0; m = 1, 2.            (9) 

It is easy to carry it out for those m, which take complex 

values. If m is real, the limiting absorption principle is used, 

which allows to build the only solution for the half-plane. This 

principle, as it is known, is that instead of the parameter ,   

 – i,  > 0 is introduced and the roots m, satisfying the 

condition (9) are taken. 

Note that under the values of 1, 2, one should understand 

a couple of roots involved in the solution with the required 

sign before their external radicals from (5) in order to meet the 

condition (9). 

So, we get the general expression of the transformant 

solution for strip and half-plane, respectively: 
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Now we will use the boundary conditions to determine the 

unknown constants kC , kC
~

, included in (10) for each type of 

connection. The advanced matrix of these heterogeneous 

systems takes the following forms: 

1) The case of rigid connection: 
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2) The case of sliding connection: 
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Solving the system (11) and (12) relative to kC , kC
~

, will 

provide solutions for both media in the form of the following 

transformant: 
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Applying the inverse transform to (14) we can write the 

solution to the strip and half-plane x3  0 in the integral form 

used below. 
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Further applied known approach to the calculation of 

improper integrals (15) and (16) is based on the method of 

contour integration in complex plane. The feasibility of this 

process stems from the fact that for the elastic field asymptotic 

effective evaluation can be obtained far from sources of the 

disturbance area, for large 
2

3

2

1 xxR  . For performing 

contour integration and cuts, on the banks of which the sheets 

of the Riemann surface are connected, where the functions 

k(), k = 1, 2, 3, 4 are uniquely identified, the limiting 

absorption principle is used.  

Integrand expression in (15) and (16), after the introduction 

according to the principle of limiting absorption of small 

friction  > 0, will have four branch points 
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From (18) we see that the shift of the pole with real axis is 

determined by the sign of the derivative of 
0

 n

o

. 

The next step is the deciding on the choice of spending cuts 

in the complex plane , allowing to select definite branch 

functions from (15) and (16), corresponding to the limiting 

absorption principle: when considering n  C, choose roots 

that satisfy the attenuation of waves at infinity 3x , so, 

n:    Im n < 0,     n = 1, 2. 

Before proceeding to further discussion, let us pay attention 

to the following. The numerical results presented in this work 

belong to such a half-plane anisotropy, when in terms of 

dimensionless parameters of elasticity , ,  and the 

dimensionless constant bmn, introduced for the half-plane 

above, 

,
)(2

,,
1111

2
13135511

55
11

55

b

d

b

bbbb
b

b

b



           (19) 

this type is defined as the second one, according to V. 

Budaev's classification in [11]: 

Type II  2,)1(  (for example, beryllium and barium 

titanate). 

According to the radiation conditions the only possible way 

of spending cuts was obtained in work [6] and [7] and used in 

[8] and [9]. 

Thus, given that in case ax 1
 calculations are similar, 

forming the General contour of integration, consisting of a 

circle of large radius in the lower complex half-plane, a 

segment of real axis and two loops using the Cauchy theorem 

and Lemma Jordan, come to equality: 
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are functions to strip and half-plane, respectively, 

L1, L2 are paths along the banks of the sections and encircling 

the branch point 1, 2:    m(m) = 0,   m = 1, 2. 

III. ANALYSIS OF ENERGY FLOW 

One of the main questions of the present study was the 

energy of received fields in both media. The dependence of 

energy characteristics from the properties of driving force and 

connection kind of the strip and half-plane was determined. 

General expression of the average period power stream 

supplied to the infinite layer on the half-plane was considered. 

The average period power stream W  loaded through normal 

forces pad ax 1 , х3 = – h can be defined by the formula 
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Formula (21) is not applicable when ax 1 , because  the 

short circuit in the lower complex half-plane conditions of 

Lemma Jordan are not met. For output expression of the 

displacement vector in this case, one must provide 

transformant from the function loads (23) in the form of the 

sum, which is taken in the present study as a constant on the 

interval [–a, a] load g(x1) = p of unit cost intensity (2pa = 1), 
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We will substitute F() of (24) with the integral for the 

stripe at x3 = –h, i.e. with integral 
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native integrals. Given the above with respect to all the 

features of subintegral functions (25) and the types of sections, 
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be used further in the study of energy flow 
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Here were introduced the following notation: 
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where 1, 2 are branch points of 1(), 2(), respectively 

(1 < 2). 

When computing now the flow of energy, «uploaded» 

through the loading area (22), we considered this characteristic 

depending on a parameter a – half of the length of the segment 

of action of driving force In Fig. 1 one can see graphs of 

functions W (a) for both types of connection media. Both, 

here and hereafter graphics corresponding to the rigid 

connection are shown in solid curve by sliding dotted line. 

Calculations showed that a in the values of W (a) is 

monotonically decreasing. The General predominance of flow 

in the case of a rigid connection there is a, in which this 

difference is maximal. When a  0, we have the following 

ratio of flow: 

W (rigid) = 1.11W (sliding)          . 

 
Fig. 1. Flow of energy, “uploaded” through the loading area. 
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Then the flow of energy through the cross-section of the 

strip (x1 = const) single width and height h was considered As 

is known, this value is given by the formula (8): 

3

0 )1(

313

)1(

313

)1(

111

)1(

1111
4

dxuuuu
i

W
h











  


,   (28) 

Included in (28) stress components are expressed through 

the infinite integral of the band solution. After counting the 

stress values 1W  has been obtained for x1 > a. The behaviour 

of 1W  with growing a for each connection is shown in Fig. 2. 

Stream values are reduced to small ones when reaching a 

width of a of the order of the wavelength in the strip  

(a ~  = 0.15). With a slight predominance of 1W  for sliding 

connection amplitudes take close values. When a  0, we 

have the following relation: 

1W (rigid) = 0.91 1W  (sliding).           

 

Fig. 2. Flow of energy through the cross-section of the strip. 

Next, the flow of energy that propagates through the band 

to the half-plane is determined and the field in the half-plane is 

calculated based on the formula stationary phase. For this 

purpose the integral 
)2(

u  of (16) was introduced through the 

sum of Fourier integrals: 

212
VVu  ,              (29) 

where 
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Using for m
V  of (29) the asymptotic: 
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where c is nondegenerate stationary point, which is the root 

of the equation  

0
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Further, by switching to polar coordinates, the relations 
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calculate radial component of the vector of the flow of energy 

RP


and averaged over the period the energy stream 2W , 

passing through the semicylindrical surface of the radius of R. 

 

Fig. 3. Flow of energy through the band to the half-plane. 

The graph of the function of the energy flow in the half-

plane 2W  is based on the same parameter as shown in Fig. 3, 

where there is a predominance of flow for the hard connection. 

When a  0 the ratio is: 

2W (rigid) = 4.26 2W (sliding).          

Taking the entire portable flow 1W + 2W  for 100% with 

concentrated indignation, the components are separated as 

follows: 

1W (rigid) – 69%; 2W (rigid) – 31% = (15% + 16%); 

1W (sliding) – 54%; 2W (sliding) – 46% = (30% + 6%). 

For 2W  the distribution is given to the parts, corresponding 

to quasiparallel and quasioptical waves. 

IV. RESULTS AND DISCUSSION 

Thus, from the comparative analysis of properties of energy 

flows for two connection types it follows: 

1) The total value of 1W + 2W  coincides with W , which 

proves that the energy balance is taking place for the 

considered composite waveguide; 

2) The available band is a barrier to the spread of the energy 

flow into the half-plane, so the most part of the «uploaded» 

power is transferred by the stripe; 

3) By choosing the «moving» connection of materials the 

amount of power «uploaded» composite waveguide can be 

reduced by 10.5% when a  0 as compared with «hard» 

connection; 
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4) It is shown that the choice of connection, can be adjusted 

to the distribution of the energy flow in the waveguide. In this 

example, the flow propagating in half-plane, while transiting 

from the sliding connection to the hard, increases in the 

band - reduces. 
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