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Calculation of Eigenvalues for  

Eddy Current Testing Problems 

Valentina Koliskina, Riga Technical University  

Abstract − Semi-analytical solutions of eddy current testing 

problems require several computational steps. One of the steps 

where numerical methods are needed is calculation of complex 

eigenvalues without good initial approximation for the roots. In 

the presented paper we describe three eddy current testing 

problems with cylindrical symmetry where a cylindrical inclusion 

in a conducting medium is of finite size. In all three cases 

eigenvalue problem reduces to transcendental equations 

containing Bessel functions in a complex plane. The algorithm of 

the solution of such problems is described in the paper. Results of 

numerical computation are presented.   

 

Keywords – Bessel functions, complex eigenvalues, eddy 

current testing, flaw detection, TREE method. 

 

I. INTRODUCTION 

Eddy current method is widely used for quality testing of 

electrically conducting materials. The method is based on the 

principle of electromagnetic induction. If a conducting 

medium (for example, a metal plate) is located near a source 

of alternating current (for example, a coil) then eddy currents 

are induced in the medium. These currents, in turn, interact 

with the currents in the coil changing the impedance of the 

coil. If a flaw is present in a conducting medium then the 

parameters of the flaw are usually estimated solving the 

inverse problem, where the difference (in some norm) between 

experimental and theoretical data is minimized [1]. Thus, a 

reliable and accurate method for the solution of a direct 

problem is needed in order to solve the inverse problem. 

The classical approach for solving direct problems is based 

on the assumption that a conducting medium is infinite in one 

or two spatial dimensions. Method of integral transforms (such 

as Hankel of Fourier transforms) is used in such cases to 

compute the change in impedance of the coil [2], [3]. In many 

cases, however, conducting medium is of finite size. 

Numerical methods such as finite element methods are usually 

used in cases of complex geometry of the conducting medium 

[4]. Applications include coin validation, estimation of the 

effects of corrosion and analysis of other flaws in a conducting 

medium.  

Semi-analytical solutions for problems where a conducting 

medium is of finite size can be constructed by the TREE 

method [3], [5]. The basic assumption in the TREE method is 

that the electromagnetic field is assumed to be exactly zero at 

a sufficiently large distance from the coil. In this case the 

boundary conditions of the first or second kind are imposed on 

the artificial boundary (where the field is zero). This idea 

allows one to extend the class of problems which can be 

solved by analytical methods. Using the TREE method the 

solution is constructed by means of the method of separation 

of variables. However, some steps of the solution procedure 

require the use of numerical methods. In particular, one of the 

steps in the TREE method is the calculation of complex 

eigenvalues. The eigenvalue problem reduces to the solution 

of the equation 

,0)( z                                                    (1) 

where z  is a complex which occurs in eddy current testing 

problems where the boundary conditions between media with 

different properties are used.  

There are two important aspects of the solution of (1). First, 

no good initial guess for the roots of (1) is known. Second, 

relatively large number of eigenvalues needs to be computed 

since the change in impedance of an eddy current coil is 

represented by an eigenfunction expansion. The numerical 

procedure used to compute the roots of (1) is described in the 

presented paper. Preliminary results leading to this publication 

were reported at the international conference in Šibenik, 

Croatia, in 2013 [6].  

II. THREE TYPES OF EDDY CURRENT TESTING PROBLEM 

In this section we describe three models where the solution 

of (1) represents an important computational step. The 

geometry of the first model is shown in Fig. 1.  

 

 
Fig. 1. Coil with alternating current above the conducting cylinder. 

 

This model can be used in practice to analyze objects 

inserted in coin validators. Consider a coil with alternating 

current of frequency   located above the conducting 

cylinder. The inner and outer radii of the coil are 1r  and 2r , 

respectively. The coil is located at a distance 1z  from the 

conducting cylinder. The height of the coil is 12 zz  . The 

parameters describing the cylinder are as follows: c  is the 

radius, d  is the height and  is the electrical conductivity 

(the cylinder is non-magnetic). We used the TREE method [3] 

to solve the problem. It was assumed that the electromagnetic 
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field is exactly zero at a sufficiently large radial distance 

b from the axis of the coil. 

The problem was solved by method of separation of 

variables where the solution is expressed in terms of the vector 

potential. The finite size of the cylinder imposes some 

additional conditions. In particular, two sets of eigenvalues 

have to be calculated. One set of eigenvalues is obtained from 

the condition that the vector potential in regions 10 ,RR  and 

2R  is equal to zero. The corresponding eigenvalues are given by 

ni
b

i
i ,..,2,1, 


                                       (2) 

where i are the roots of the equation 

.0)(1 J                                                         (3) 

Here )(1 J  is the Bessel function of the first kind of order 

one. The roots i can be easily computed with Mathematica. 

The corresponding Mathematica script is shown in Fig. 2 

where the first ten zeros of (3) are shown. 

<< NumericalMath`BesselZeros` 

 

Ns = 10; alfa = BesselJZeros[1, Ns] 

 

{3.83171, 7.01559, 10.1735, 13.3237, 16.4706, 

19.6159, 22.7601, 25.9037, 29.0468, 32.1897} 

 

Fig. 2. Mathematical code for the computation of the zeros of (3).  

 

The corresponding eigenvalues ip are the roots of the 

equation 

,0)()()()( 1
'
1

'
11  pcTqcqJpcTqcpJ            (4) 

where  

),()()()()( 11111 rpYbpJbpYrpJrpT iiiii   

)(xYi  is the Bessel function of the second kind of order one, 

,0
2

jpq ii  j  is the imaginary unit,  

f 2  and 0  is the magnetic constant. 

The second model is shown in Fig. 3. 

The model can be used to analyze the effect of corrosion in 

metal plates. The corresponding eigenvalue relation in this 

case has the form 

),()()()( 1
'

1
'
11 cpJcqTqcpJcqTp iiiiii               (5) 

where ).()()()()( 11111 cqYbqJbqYcqJcqT iiiii   

 

 
 
Fig. 3. Coil of finite dimensions above the conducting plate with a cylindrical 

hole. 

The third model is shown in Fig. 4 and can be used to test 

the quality of spot welding. A cast core (represented by a 

cylinder of radius c ) is formed during the welding process. 

The conductivity 2 of the cylinder is (as experimental data 

show) close to the conductivity 1  of the surrounding 

medium (however, no restriction on 2  is imposed in our 

analysis). The eigenvalue relation is given by (5), where 

.02
2

jpq ii   

 

 
Fig. 4. Coil with finite dimensions above the half-space with a flaw. 

III. NUMERICAL PROCEDURE 

The solution of eigenvalue problems (4) and (5) is based on 

the idea described in [7] and [8]. It is known from the theory 

of complex variables that the number of zeros 0n , of an 

analytic function )(z inside a closed contour C  is equal to 

.
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In addition, it can be shown [7], [8] that 
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where kii ,..,2,1,  are zeroes (simple or multiple) of )(z  

inside C  and .,..,2,1 kn   

It is suggested in [7] and [8] that using (7) one can construct 

a polynomial of degree k  roots of which are the same as the 

roots of )(z . The roots of the polynomial (and, therefore, the 

roots of )(z ) can be easily computed (for example, 

Mathematica command Roots can be used). However, the 

number k should not be too large since roots of a polynomial 

of high degree can be quite sensitive to the coefficients [9]. 

We developed an algorithm for the computation of roots of (1) 

for the case where there are at most two eigenvalues inside C . 

The contour C  is a rectangle (which can easily be sub-divided 

into smaller rectangles, if necessary). If there are two 

eigenvalues inside C  then the program divides the rectangle 

by smaller rectangles until there is only one root of (1) inside 

C . The eigenvalue is computed by formula (7) with 1n . As 

an example we present here computational results for the first 

problem (detailed calculations for other cases can be found in 

[10]). The program for the computation of complex 

eigenvalues can also be found in [10].  

The first 5 roots of (3) are shown in Fig. 5 for the following 

parameters of the problem 6.9 Ms/m, 2/75.19c mm, 

60b  mm,   = 1 kHz.  

 

 
 

Fig. 5. First five roots of (3). 

IV. CONCLUSION AND DIRECTION OF FUTURE WORK 

An algorithm for the computation of complex eigenvalues 

for eddy current testing problems is described in the paper. 

The algorithm is implemented in Mathematica. Calculations 

show that the method is reliable and efficient (at least, for 

relatively low frequencies in the range from 1 kHz to 10 kHz). 

Determination of complex eigenvalues is one of the important 

steps in the TREE method (see examples in [11] and [12]). 

Recently asymmetric problems of eddy current testing 

problems were solved in [13]−[16]. Solutions were obtained 

using the second order vector potential formulation. The 

author is currently working on the application of the TREE 

method and second order vector potential formulation to 

asymmetric problems in cylindrical coordinates.  
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